Introduction to neutron reflection

Adrian Rennie

Outline

Inteference of waves
 Refractive index
 Critical angle, total reflection

Reflection

UPPSALA UNIVERSITET

Light

Reflection

UPPSALA UNIVERSITET

Light

Contrast: light elements, isotopes Penetrate
Magnetism

Reflection and Refraction: Snell's Law

For specular reflection:
Optical Notation

$$
\phi_{\mathrm{i}}=\phi_{\mathrm{r}}
$$

Transmitted beam is refracted:
$\mathrm{n}_{2} \sin \phi_{\mathrm{t}}=\mathrm{n}_{1} \sin \phi_{\mathrm{i}}$
n is refractive index

Reflection and Refraction: Snell's Law

For specular reflection:

Neutron Reflection
Notation

Beam

$$
\theta=90^{\circ}-\varphi
$$

$$
\theta_{i}=\theta_{r}
$$

Transmitted beam is refracted:
$\mathrm{n}_{2} \cos \theta_{\mathrm{t}}=\mathrm{n}_{1} \cos \theta_{\mathrm{i}}$
n is refractive index

Reflection - measured quantities

Reflection

Reflected beam deflected: 2θ
Reflectivity

$$
R(Q)=I_{R} / I_{0}(\lambda)
$$

Momentum transfer

$$
Q=(4 \pi / \lambda) \sin \theta
$$

Demonstration Calculations

UPPSALA
UNIVERSITET

www.ncnr.nist.gov/instruments/magik/calculators/reflectivity-calculator.html

www.ncnr.nist.gov/instruments/magik/calculators/magnetic-reflectivity-calculator.html

Critical Angle and Below (critical wavelength and above)

Density difference between two bulk phases determines the critical momentum transfer/angle, Q_{c} or θ_{c}

Any variation in intensity below critical angle is probably telling you about the experiment rather than the interface
$R(Q)=1$ for $\theta<\theta_{c}$ is often used as a calibrant
$R(Q) \sim 1 / Q^{4}$ for sharp interface
Total reflection below critical angle θ $\cos \theta=\mathrm{n}_{2} / \mathrm{n}_{1}$

Calculating Refractive Index

Neutrons

$$
\mathrm{n}=1-\left(\lambda^{2} \Sigma_{\mathrm{i}} \mathrm{~b}_{\mathrm{i}} / \mathrm{V} / 2 \pi\right)
$$

λ is the wavelength
$\Sigma_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}$ is the sum of scattering lengths in volume V
b is known for most stable nuclei
$\rho=\Sigma_{i} b_{i} / V$

Scattering Lengths of Nuclei

UPPSALA
UNIVERSITET

Nucleus	Scattering Length $/ \mathrm{fm}$
${ }^{1} \mathrm{H}$	-3.741
${ }^{2} \mathrm{H}$ (or D)	6.675
C	6.648
O	5.805
Si	4.151
Cl	9.579

Source: H. Rauch \& W. Waschkowski

Properties of Common Materials

Material	Scatt. Length Density $/ 10^{-6} \AA^{-2}$	Refractive index at $10 \AA$
$\mathrm{H}_{2} \mathrm{O}$	-0.56	1.000009
$\mathrm{D}_{2} \mathrm{O}$	6.35	0.999899
Si	2.07	0.999967
Air	0	1.000000
Polystyrene	1.4	0.999971

Contrast in a Thin Film

UPPSALA UNIVERSITET

Calculation for Neutrons
$100 \AA$ layer with $\rho=1,3 \& 5 \times 10^{-6} \AA^{-2}$ on $\mathrm{Si}\left(\rho=2.07 \times 10^{-6} \AA^{-2}\right)$

Increasing contrast changes visibility of fringes

Phase change makes large difference

Fringes (Kiessig fringes) - spacing indicates film thickness for a single layer.

Roughness

UPPSALA UNIVERSITET

Reflectivity from rough surfaces is decreased.

L. Nevot, P. Crocé J. Phys. Appl. 15, T61 (1980)

Intensity of Reflected Signal

UPPSALA
UNIVERSITET
Waves interfere constructively for

$$
2 \mathrm{~d} \sin \theta=\lambda, 2 \lambda, 3 \lambda \ldots \text { (Bragg's law) }
$$

Measured reflectivity will depend on angle and wavelength.

Total reflection for angles less than critical angle, $\theta_{c}=\arccos \left(\mathrm{n}_{1} / \mathrm{n}_{2}\right)$

Useful Physical Ideas

UPPSALA
UNIVERSITET
Models for complex interfaces can be constructed from multiple thin layers of different refractive index, n or scattering length density, ρ.

Useful Physical Ideas

Isotopes (e.g. D/H substitution) can be used to label particular species or alter contrast

Neutrons have spin - effectively a field dependent contribution to scattering length

Abeles Optical Matrix Method

UPPSALA UNIVERSITET

$$
r_{j}=\left[\begin{array}{cc}
e^{i \beta_{\mu-1}} & r_{j-1} e^{i \beta_{\mu-1}} \\
r_{j-1} e^{-i \beta_{\mu-1}} & e^{-i \beta_{\mu-1}}
\end{array}\right]
$$

$$
\beta_{j}=(2 \pi / \lambda) n_{j} d_{j} \sin \theta_{j}
$$

$$
p_{j}=n_{j} \sin \theta_{j}
$$

$$
r_{j}=\left(p_{j-1}-p_{j}\right) /\left(p_{j-1}+p_{j}\right) \quad M_{R}=\left[M_{1}\right]\left[M_{2}\right] \ldots\left[M_{n-1}\right]
$$

$R(Q)=M_{21} M_{21} * / M_{11} M_{11} *$

Magnetic Contrast

$\mathrm{b}_{\mathrm{m}}=\mu_{0} \mathrm{e}^{2} \mathrm{~S} \gamma / 4 \pi \mathrm{~m}_{\mathrm{e}}$
e , electronic charge m_{e}, electron mass
S, spin

μ_{0}, Permeability of free space γ, gyromagnetic ratio, 1.913

$$
\mathrm{b}_{\mathrm{tot}}=\mathrm{b}_{\text {nuclear }} \pm \mathrm{b}_{\mathrm{m}}
$$

Magnetic Contrast

 UNIVERSITET$$
\mathrm{b}_{\mathrm{m}}=\mu_{0} \mathrm{e}^{2} \mathrm{~S} \gamma / 4 \pi \mathrm{~m}_{\mathrm{e}}
$$

e , electronic charge m_{e}, electron mass

μ_{0}, Permeability of free space γ, gyromagnetic ratio, 1.913

$$
\mathrm{b}_{\mathrm{tot}}=\mathrm{b}_{\text {nuclear }} \pm \mathrm{b}_{\mathrm{m}}
$$

Scattering and Reflection

$$
R(Q)=\frac{16 \pi^{2}}{Q^{2}}|\rho(Q)|^{2}
$$

normal to the interface,
$\rho(\mathrm{z})$

$$
\rho(\mathrm{Q})=\int_{-\infty}^{\infty} \rho(\mathrm{z}) \mathrm{e}^{-\mathrm{i} \mathrm{Q} \mathrm{z}} \mathrm{dz}
$$

For sharp interface:
$R(Q) \sim 1 / Q^{4}$

Partial Structure Factors

Interface consists of distinct components: 1, 2, 3

$$
\begin{array}{r}
R(Q)=\frac{16 \pi^{2}}{Q^{2}}\left|\rho \rho(z) e^{i Q z} d z\right|^{2} \\
\rho(z)=b_{1} n_{1}(z)+b_{2} n_{2}(z)+b_{3} n_{3}(z) \\
R(Q)=\frac{16 \pi^{2}}{Q^{2}}\left(b_{1}^{2} h_{11}+2 b_{1} b_{2} h_{12}+b_{2}^{2} h_{22}+2 b_{2} b_{3} h_{23}+b_{3}^{2} h_{33}+2 b_{3} b_{1} h_{31}\right) \\
h_{i j} \text { are transforms of } n_{i} n_{j}-\text { pair correlation functions } \\
\text { Lu, J. R.; Thomas, R. K.; Penfold, J. Adv. Coll. Inter. Sci. 2000, 84, 143-304. }
\end{array}
$$

Practical Aspects of Neutron Reflection How to Collect Data

Adrian R. Rennie

Reflection - measured quantities

Reflection

Reflected beam deflected: 2θ
Reflectivity

$$
\mathrm{R}(\theta, \lambda)=\mathrm{I}_{\mathrm{R}} / \mathrm{I}_{0}(\lambda)
$$

Momentum transfer

$$
Q=(4 \pi / \lambda) \sin \theta
$$

Best Sources of Neutrons

UPPSALA
UNIVERSITET

ILL reactor continuous
Thermal Flux $1.5 \times 10^{15} \mathrm{n} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$

SNS, ORNL $60 \mathrm{~Hz}, 300 \mu \mathrm{~s}$
$5 \times 10^{17} \mathrm{n} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$ (Peak)

Neutrons: Speed \& Wavelength

Velocity, v, from de Broglie relation

$$
v \lambda=3956 \mathrm{~m} \mathrm{~s}^{-1} \AA
$$

i.e. $10 \AA$ has $400 \mathrm{~m} \mathrm{~s}^{-1}$

Gravity is significant, separate wavelengths mechanically

Using a Pulsed Source

Distance

Detection time (after source pulse) gives wavelength

Choppers can select a wavelength

UPPSALA

 UNIVERSITET
D17 Reflectometer

Practical Issues

 (or angle). Signal is easily 'lost' in background.To observe fringes it will be necessary to measure over an appropriate range of Q and to have sufficient resolution ($\Delta \mathrm{Q}$ small enough).

Reflection from a Thin Film

Model calculation on smooth surface.

Fringe spacing depends on thickness

Fringe spacing ~ $2 \pi / \mathrm{d}$

Model layer with $\rho=5 \times 10^{-6} \AA^{2}$ on Si $\left(2.07 \times 10^{-6} \AA^{-2}\right)$ Blue $30 \AA$, Pink $100 \AA$. No roughness.

Resolution in Q

$$
Q=(4 \pi / \lambda) \sin \theta
$$

Depends on $\Delta \lambda$ and $\Delta \theta$
Angle resolution, $\Delta \theta$, depends on collimation (slits)
Wavelength resolution depends on monochromator or time resolution in measuring neutron
 pulse

Effects of Resolution

Silicon substrate: film thickness $1500 \AA$ (150 nm) scattering length density $6.3 \times 10^{-6} \AA^{-2}$

UPPSALA UNIVERSITET

Sample Holder

D17 reflectometer ILL, France

Alignment

Rotation table must have centre on beam axis

Sample must be centred on rotation (half obscure the direct beam) - eucentric mount

Determine θ from the position of beam on a detector

Aligning a Sample

Design mount with surface at centre of rotation of ω. Eucentric mount.

Put centre of surface on the line through axis of rotation (x direction)

The rotation ω stage must be centred on the incident beam.

Aligning a Sample

Set sample and detector to nominal zero
Choose fine slits to give collimated beam

Aligning a Sample

Move z to approximate sample in beam position

Scan ω

Look at intensity on detector

Identify $\omega=-0.22$ ($\sim 190 \mathrm{cts}$) as approximate sample offset angle

Aligning a Sample

Aligning a Sample

Use new ω offset and z offset from alignment on direct beam
Check translation (z) offset in reflection mode.

Scan z and look for peak. Position is -3.38 mm .

Comments on Alignment

Comments on Alignment

Using the results of alignment scans needs offsets or new zero positions to be set on the instrument. Warning: there is no general convention of signs on different instruments

Linear thermal expansion can be $\sim 2 \times 10^{-5}$ $\mathrm{K}^{-1} .4 \mathrm{~cm}$ of aluminium changed by 50 C gives a shift of 0.04 mm .

Calibrations

Scan angle, measure different λ or a combination of λ and angle

Measure direct beam (through sample environment if needed)

Incident beam spectrum, LARMOR

Samples

Low incident angle requires large uniform surface area. Footprint ~ s / tan θ.

Areas often several cm².
Smooth surface. $10 \AA$ roughness will reduce the reflectivity at $\mathrm{q}=0.1 \AA^{-1}$ by 2.7. $15 \AA$ reduces reflectivity by a factor of 10 .

Liquids will have surface oscillations (capillary waves). Need to avoid other, induced waves.

Sample Cell

UPPSALA UNIVERSITET

Chemistry on a Liquid Surface

UPPSALA UNIVERSITET

Langmuir Trough

In place of a drop use, a uniform flat surface

What is measured?

UPPSALA
UNIVERSITET
Reflected signal may have a large background
For hydrogenous substrate $\sim 5 \times 10^{-6}$ incident beam
Attenuation by reduced transmission (caused by scattering or absorption) may be significant

Fate of a Neutron at an Interface

- Reflected
- Scattered/Diffracted from surface
- Absorbed
- Scattered from bulk (either side of surface)
- Other accidents

What does background look like?

UPPSALA

UNIVERSITET
X-ray scattering - glass
Sinha et al., Phys. Rev. B.
38, 2297, 1988.

Neutron scattering from $\mathrm{D}_{2} \mathrm{O}$ and from null reflecting water
Rennie et al.,
Macromolecules 22, 34663475 (1989).

FIG. 6. Calculation of diffuse scattering in the distortedwave Born approximation for rocking curve where θ_{1} and θ_{2} are varied such that 2θ is fixed at 1°. The asymmetry is due to the area of the illuminated surface decreasing as θ_{1} is increased. The q_{y} direction has been integrated over. Parameters are $\sigma=7$ $\AA, h=0.2, \xi=7000 \AA$, and the optical constants for Pyrex are given in Sec. V.

Contrast Matching

UPPSALA
UNIVERSITET

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O} & \rho=-0.56 \times 10^{-6} \AA^{-2} \\
\mathrm{D}_{2} \mathrm{O} & \rho=+6.35 \times 10^{-6} \AA^{-2}
\end{array}
$$

$$
y \times 6.35+(1-y) \times(-0.56)=0
$$

$$
6.91 y=0.56 \text { or } y=0.56 / 6.91=0.081
$$

i.e. 8% by volume of $\mathrm{D}_{2} \mathrm{O}$ in $\mathrm{H}_{2} \mathrm{O}$ has $\mathrm{n}=1$

Comments on Calculations

Programs that lose data
It is common to use logaritmic scales but background subtraction can give negative data points. $R Q^{4}$ is useful.
Experimental issues
Resolution - often needs to be included

Illumination
Small samples are often not able to reflect all the beam and a geometrical correction is applied.
Absolute reflectivity
Data is constrained if it is on an an absolute scale

What has not (yet) been covered?

Ellipsometry and X-rays
Needs more calculations for s and p waves

How to write a minimisation routine?

How to install your favourite program?

Specific examples of real samples etc.

Do's and Don'ts

- Do not bend samples - care with mounts
- Use anti-vibration mounts for liquids - air borne noise causes vibrations
- Capillary waves cause scattering

Questions?

Sample Environments

UPPSALA

UNIVERSITET

- Choice is very large
- Build for your own experiment

Thin Film Growth

UPPSALA UNIVERSITET

J. A. Dura, J. LaRock 'A molecular beam epitaxy facility for in situ neutron scattering' Rev. Sci. Instrum. 80, (2009), 073906.

A. A. Baker, W. Braun, G. Gassler, S. Rembold, A. Fischer, T. Hesjedal 'An ultra-compact, high-throughput molecular beam epitaxy growth system' Review of Scientific Instruments 86, (2015), 043901.

High Pressure

Martin Kreuzer, Thomas Kaltofen, Roland Steitz, Beat H. Zehnder, Reiner Dahint 'Pressure cell for investigations of solid-liquid interfaces by neutron reflectivity' Rev. Sci. Instrum. 82, (2011), 023902.

Alexandros Koutsioubas, Didier Lairez, Gilbert Zalczer, Fabrice Cousin ‘Slow and remanent electric polarization of adsorbed BSA layer evidenced by neutron reflection' Soft Matter, 8, (2012), 2638-2643.

Continuously Generated Fresh Liquid Surface

Julian Eastoe, Alex Rankin, Ray Wat, Colin D. Bain, Dmitrii Styrkas, Jeff Penfold 'Dynamic Surface Excesses of Fluorocarbon Surfactants' Langmuir, 19, (2003), 7734-7739.

Battery Electrodes

UPPSALA UNIVERSITET

B. Jerliu, L. Dörrer, E. Hüger, G. Borchardt, R. Steitz, U. Geckle, V. Oberst, M. Bruns, O. Schneider, H. Schmidt 'Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries' Phys. Chem. Chem. Phys., 15, (2013), 7777-7784.

Liquid / Liquid Interfaces

UPPSALA UNI

A. Zarbakhsh, J. Bowers, J. R. P. Webster, 'A new approach for measuring neutron reflection from a liquid/liquid interface' Meas. Sci. Technol. 10, (1999), 738-743.

Other Ideas and Possibilities

http://www.reflectometry.net/reflect bib.htm\#Sample environment

Sample Environment for Reflection

Seq. No.	Reference	Digital Source - DOI	Year	Technique
61	F. A. Adlmann, P. Gutfreund, J. F. Ankner, J. F. Browning, A. Parizzi, B. Vacaliuc, C. E. Halbert, J. P. Rich, A. J. C. Dennison, M. Wolff 'Towards neutron scattering experiments with submillisecond time resolution' J. Appl. Cryst . 48, (2015), 220-226.	http://dx.doi.org/10.1107/S1600576714027848	2015	Oscillatory Shear
42	Anna Angus-Smyth, Richard A. Campbell, Colin D. Bain 'Dynamic Adsorption of Weakly Interacting Polymer/Surfactant Mixtures at the Air/Water Interface' Langmuir, 28, (2012), 12479-12492.	http://dx.doi.org/10.1021/la301297s	2012	Overflowing Cylinder
15	I. F. Bailey 'A review of sample environments in neutron scattering' Z. Kristallogr. 218, (2003), 84-95.	http://dx.doi.org/10.1524/zkri.218.2.84.20671	2003	Review
5	Shenda M. Baker, Gregory Smith, Roger Pynn, Paul Butler, John Hayter, William Hamilton, Lee Magid 'Shear cell for the study of liquid-solid interfaces by neutron scattering' Rev. Sci. Instrum. 65, (1994), 412-416.	http://dx.doi.org/10.1063/1.1145148	1994	Shear
59	A. A. Baker, W. Braun, G. Gassler, S. Rembold, A. Fischer, T. Hesjedal 'An ultra-compact, high-throughput molecular beam epitaxy growth system' Review of Scientific Instruments 86, (2015), 043901.	http://dx.doi.org/10.1063/1.4917009	2015	MBE
4	T. M. Bayerl, R. K. Thomas, A. R. Rennie, J. Penfold, E. Sackmann, 'Specular reflection of neutrons at phospholipid monolayers: changes of monolayer structure and head group hydration at the transition from the expanded to the condensed phase state', Biophysical Journal 57, (1990), 1095-1098.	http://dx.doi.org/10.1016/S0006-3495(90)82628-X	1990	Langmuir trough
62	N. Booth, G. Davidson, P. Imperia, S. Lee, B. Stuart, P. Thomas, K. Komatsu, R. Yamane, S. W. Prescott, H. E. Maynard-Casely, A. Nelson, K. C. Rule 'Three impossible things before lunch - the task of a sample environment specialist' Journal of Neutron Research 19, (2017), 49-56.	http://dx.doi.org/10.3233/JNR-170041	2017	Conductivity, in-line
13	James Bowers, Ali Zarbakhsh, John R. P. Webster, Lian R. Hutchings, Randal W Richards 'Nentron Reflectivity Studies at Timuid-T imuid	http://dx.doi.org/10.1021/la0011190	2001	Liquid/liquid interface

Questions?

Roughness

Reflectivity from rough surfaces is decreased.
'Gaussian' roughness'

- intensity decreases by $\exp \left(-Q^{2} \xi^{2} / 2\right)$ for scattering vector, Q and amplitude of roughness, ξ.

L. Nevot, P. Crocé J. Phys. Appl. 15, T61 (1980)

UPPSALA UNIVERSITET

 Critical Angle and Below

 Critical Angle and Below (critical wavelength and above)

 (critical wavelength and above)}

Density difference between two bulk phases determines the critical momentum transfer/angle, Q_{c} or θ_{c}

Any variation in intensity below critical angle is probably telling you about the experiment rather than the interface
$R=1$ for $\theta<\theta_{c}$ is often used as a
 calibrant

Total reflection below critical angle θ $\cos \theta=\mathrm{n}_{2} / \mathrm{n}_{1}$

Intensity of Reflected Signal

- Waves interfere constructively for

$$
2 \mathrm{~d} \sin \theta=\lambda, 2 \lambda, 3 \lambda \ldots
$$

- Measured reflectivity will depend on angle and wavelength. Add wave amplitudes with allowance for phase and calculate intensity as square of amplitude.
- Total reflection for angles less than critical angle, $\theta_{c}=\arccos \left(\mathrm{n}_{1} / \mathrm{n}_{2}\right)$

Fresnel Formula

Reflection from an interface between two media with $\Delta \rho=\rho_{1}-\rho_{2}$ is for $Q \gg Q_{c}$:

$$
R(Q)=16 \pi^{2}(\Delta \rho)^{2} / Q^{4}
$$

Note
This does not depend on sign of $\Delta \rho$.

Scattering from $\mathrm{D}_{2} \mathrm{O}$
and from null reflecting water
(8\% $\left.\mathrm{D}_{2} \mathrm{O}\right)$
Ange,, Y/degroes Rennie et al., Macromolecules 22, (1989), 3466-3475.

