

Introduction to neutron reflection

Adrian Rennie

Inteference of waves Refractive index Critical angle, total reflection

Reflection

Light

Reflection

Light

Why neutrons?

Contrast: light elements, isotopes Penetrate Magnetism

Reflection and Refraction: Snell's Law

For specular reflection:

Optical Notation

$$\varphi_i = \varphi_r$$

Transmitted beam is refracted: $n_2 \sin \phi_t = n_1 \sin \phi_i$

n is refractive index

Reflection and Refraction: Snell's Law

For specular reflection:

Neutron Reflection Notation

Beam n_1 θ_i θ_r θ_r θ_t $\theta_{\rm i}=\theta_{\rm r}$

Transmitted beam is refracted: $n_2 \cos \theta_t = n_1 \cos \theta_i$

 $\theta = 90^{\circ} - \varphi$ n is refractive index

Reflection – measured quantities

Reflection

Reflected beam deflected: 2θ Reflectivity $R(Q) = I_R/I_0(\lambda)$ Momentum transfer $Q = (4\pi/\lambda) \sin \theta$

Demonstration Calculations

www.ncnr.nist.gov/instruments/magik/calculators/reflectivity-calculator.html

www.ncnr.nist.gov/instruments/magik/calculators/magnetic-reflectivity-calculator.html

Critical Angle and Below (critical wavelength and above)

Density difference between two bulk phases determines the critical momentum transfer/angle, Q_c or θ_c

Any variation in intensity below critical angle is probably telling you about the experiment rather than the interface

R (Q) = 1 for $\theta < \theta_c$ is often used as a calibrant

 $R(Q) \sim 1/Q^4$ for sharp interface

Total reflection below critical angle θ cos $\theta = n_2/n_1$

Calculating Refractive Index

UPPSALA UNIVERSITET

Neutrons

$$\mathsf{n}=\mathsf{1}-(\lambda^2\,\Sigma_{\mathrm{i}}\,\mathsf{b}_{\mathrm{i}}/\mathsf{V}\,/\,2\pi)$$

 $\boldsymbol{\lambda}$ is the wavelength

 $\boldsymbol{\Sigma}_i \: \boldsymbol{b}_i$ is the sum of scattering lengths in volume V

b is known for most stable nuclei

 $\rho = \Sigma_i \; b_i \! / \! V$

Scattering Lengths of Nuclei

UPPSALA UNIVERSITET

Nucleus	Scattering Length / fm	
¹ H	-3.741	
² H (or D)	6.675	
С	6.648	
0	5.805	
Si	4.151	
CI	9.579	

Source: H. Rauch & W. Waschkowski

Properties of Common Materials

Material	Scatt. Length Density / 10 ⁻⁶ Å ⁻²	Refractive index at 10 Å
H ₂ O	-0.56	1.000009
D ₂ O	6.35	0.999899
Si	2.07	0.999967
Air	0	1.000000
Polystyrene	1.4	0.999971

Contrast in a Thin Film

UPPSALA UNIVERSITET

Calculation for Neutrons

100 Å layer with $\rho{=}1,\,3$ & 5 x 10^{-6} Å^{-2} on Si ($\rho{=}2.07$ x 10^{-6} Å^{-2})

Increasing contrast changes visibility of fringes

Phase change makes large difference

Fringes (Kiessig fringes) – spacing indicates film thickness for a single layer.

Roughness

Reflectivity from rough surfaces is decreased.

L. Nevot, P. Crocé J. Phys. Appl. 15, T61 (1980)

Intensity of Reflected Signal

UPPSALA UNIVERSITET

> Waves interfere constructively for 2 d sin $\theta = \lambda$, 2 λ , 3 λ ... (Bragg's law)

Measured reflectivity will depend on angle and wavelength.

Total reflection for angles less than critical angle, $\theta_c = \arccos(n_1/n_2)$

Useful Physical Ideas

UPPSALA UNIVERSITET

Models for complex interfaces can be constructed from multiple thin layers of different refractive index, n or scattering length density, ρ .

Useful Physical Ideas

UPPSALA UNIVERSITET

Isotopes (e.g. D/H substitution) can be used to label particular species or alter contrast

Neutrons have spin – effectively a field dependent contribution to scattering length

 $\beta_j = (2\pi/\lambda)n_j d_j \sin\theta_j$ $p_j = n_j \sin\theta_j$

 $r_j = (p_{j-1} - p_j)/(p_{j-1} + p_j) \qquad M_R = [M_1][M_2]...[M_{n-1}]$

$R(Q) = M_{21}M_{21} * / M_{11}M_{11} *$

$$\mathbf{b}_{\text{tot}} = \mathbf{b}_{\text{nuclear}} \pm \mathbf{b}_{\text{m}}$$

$$\mathbf{b}_{\text{tot}} = \mathbf{b}_{\text{nuclear}} \pm \mathbf{b}_{\text{m}}$$

Scattering and Reflection

UPPSALA UNIVERSITET

> $\rho(Q)$ is Fourier transform of the scattering length density distribution normal to the interface, $\rho(z)$

 $R(Q) = \frac{16\pi^2}{Q^2} \left| \rho(Q) \right|^2$

For sharp interface:

 $R(Q) \sim 1/Q^4$

Partial Structure Factors

UPPSALA UNIVERSITET

Interface consists of distinct components: 1, 2, 3

$$R(Q) = \frac{16\pi^2}{Q^2} |\int \rho(z) e^{iQz} dz|^2$$

$$\rho(z) = b_1 n_1(z) + b_2 n_2(z) + b_3 n_3(z)$$

 $R(Q) = \frac{16\pi^2}{Q^2} (b_1^2 h_{11} + 2b_1 b_2 h_{12} + b_2^2 h_{22} + 2b_2 b_3 h_{23} + b_3^2 h_{33} + 2b_3 b_1 h_{31})$

 h_{ij} are transforms of $n_i n_j$ – pair correlation functions

Lu, J. R.; Thomas, R. K.; Penfold, J. Adv. Coll. Inter. Sci. 2000, 84, 143-304.

Practical Aspects of Neutron Reflection How to Collect Data

Adrian R. Rennie

UNIVERSITET

Reflection – measured quantities

Reflection

Reflected beam deflected: 2 θ Reflectivity $R(\theta, \lambda) = I_R/I_0(\lambda)$ Momentum transfer $Q = (4\pi/\lambda) \sin \theta$

UPPSALA

Best Sources of Neutrons

ILL reactor continuous Thermal Flux 1.5 x 10¹⁵ n cm⁻² s⁻¹

SNS, ORNL 60 Hz, 300 μs 5 x 10¹⁷ n cm⁻² s⁻¹ (Peak)

Neutrons: Speed & Wavelength

UPPSALA UNIVERSITET

Velocity, v, from de Broglie relation v $\lambda = 3956 \text{ m s}^{-1} \text{ Å}$

i.e. 10 Å has 400 m s⁻¹

Gravity is significant, separate wavelengths mechanically

Detection time (after source pulse) gives wavelength

Choppers can select a wavelength

D17 Reflectometer

UPPSALA

Practical Issues

Reflectivity drops quickly with increasing Q (or angle). Signal is easily 'lost' in background.

To observe fringes it will be necessary to measure over an appropriate range of Q and to have sufficient resolution (Δ Q small enough).

Reflection from a Thin Film

Model calculation on smooth surface.

Fringe spacing depends on thickness

Fringe spacing ~ $2\pi/d$

Model layer with $\rho = 5 \times 10^{-6} \text{ Å}^2$ on Si (2.07 x 10⁻⁶ Å ⁻²) Blue 30 Å, Pink 100 Å. No roughness.

 $Q = (4\pi/\lambda) \sin \theta$

Depends on $\Delta\lambda$ and $\Delta\theta$ Angle resolution, $\Delta\theta$, depends on collimation (slits)

Wavelength resolution depends on monochromator or time resolution in measuring neutron pulse

Higher Resolution = Lower Flux

 $(\Delta Q/Q)^2 = (\Delta \lambda/\lambda)^2 + (\Delta \theta/\theta)^2$

Effects of Resolution

Silicon substrate: film thickness 1500 Å (150 nm) scattering length density $6.3 \times 10^{-6} \text{ Å}^{-2}$

Sample Holder

D17 reflectometer ILL, France

UNIVERSITET

Rotation table must have centre on beam axis

Sample must be centred on rotation (half obscure the direct beam) – eucentric mount

Determine θ from the position of beam on a detector

Design mount with surface at centre of rotation of ω . Eucentric mount.

Put centre of surface on the line through axis of rotation (x direction)

The rotation ω stage must be centred on the incident beam.

Aligning a Sample

Set sample and detector to nominal zero

Choose fine slits to give collimated beam

Aligning a Sample

Move z to approximate sample in beam position

Use approximate $\boldsymbol{\omega}$ and z offset from alignment on direct beam

Set detector to small angle of reflection (e.g. 0.5°) and align more precisely.

Scan ω and look for peak. Position is 0.378° and so offset is -0.122°.

Use new $\boldsymbol{\omega}$ offset and z offset from alignment on direct beam

Check translation (z) offset in reflection mode.

Scan z and look for peak. Position is -3.38 mm.

Angular (ω) width can depend on flatness of sample as well as resolution from slits and wavelength spread

If sample is very under-illuminated, translation (z) scan will have a flat top

UNIVERSITET

Comments on Alignment

Using the results of alignment scans needs offsets or new zero positions to be set on the instrument. Warning: there is no general convention of signs on different instruments

Linear thermal expansion can be $\sim 2 \times 10^{-5}$ K⁻¹. 4 cm of aluminium changed by 50 C gives a shift of 0.04 mm.

UPPSALA UNIVERSITET

Calibrations

Scan angle, measure different λ or a combination of λ and angle

Measure direct beam (through sample environment if needed)

Incident beam spectrum, LARMOR

UNIVERSITET

Low incident angle requires large uniform surface area. Footprint ~ s / tan θ .

Areas often several cm².

Smooth surface. 10 Å roughness will reduce the reflectivity at q=0.1 Å⁻¹ by 2.7. 15 Å reduces reflectivity by a factor of 10.

Liquids will have surface oscillations (capillary waves). Need to avoid other, induced waves.

UPPSALA UNIVERSITET

Sample Cell

What is measured?

UPPSALA UNIVERSITET

Reflected signal may have a large background

For hydrogenous substrate ~ 5 x 10⁻⁶ incident beam

Attenuation by reduced transmission (caused by scattering or absorption) may be significant

UPPSALA UNIVERSITET

Fate of a Neutron at an Interface

- Reflected
- Scattered/Diffracted from surface
- Absorbed
- Scattered from bulk (either side of surface)
- Other accidents

What does background look like?

UPPSALA UNIVERSITET

X-ray scattering – glass Sinha et al., *Phys. Rev. B.* **38**, 2297, 1988.

Neutron scattering from D₂O and from null reflecting water

Rennie et al., *Macromolecules* **22**, 3466-3475 (1989).

FIG. 6. Calculation of diffuse scattering in the distortedwave Born approximation for rocking curve where θ_1 and θ_2 are varied such that 2θ is fixed at 1°. The asymmetry is due to the area of the illuminated surface decreasing as θ_1 is increased. The q_p direction has been integrated over. Parameters are $\sigma = 7$ Å, h = 0.2, $\xi = 7000$ Å, and the optical constants for Pyrex are given in Sec. V.

 H_2O

 D_2O

Contrast Matching

 $\rho = -0.56 \times 10^{-6} \text{ Å}^{-2}$ $\rho = +6.35 \times 10^{-6} \text{ Å}^{-2}$

 $y \times 6.35 + (1-y) \times (-0.56) = 0$ 6.91 y = 0.56 or y = 0.56 /6.91 = 0.081

i.e. 8% by volume of D_2O in H_2O has n = 1

UNIVERSITET

Comments on Calculations

Programs that lose data

It is common to use logaritmic scales but background subtraction can give negative data points. R Q⁴ is useful.

Experimental issues

Resolution – often needs to be included

Illumination

Small samples are often not able to reflect all the beam and a geometrical correction is applied.

Absolute reflectivity

Data is constrained if it is on an an absolute scale

UPPSALA

What has not (yet) been covered?

Ellipsometry and X-rays

Needs more calculations for s and p waves

How to write a minimisation routine?

How to install your favourite program?

Specific examples of real samples etc.

UPPSALA

Do's and Don'ts

• Do not bend samples – care with mounts

 Use anti-vibration mounts for liquids – air borne noise causes vibrations

Capillary waves cause scattering

Questions?

Sample Environments

UPPSALA UNIVERSITET

- Choice is very large
- Build for your own experiment

J. A. Dura, J. LaRock 'A molecular beam epitaxy facility for in situ neutron scattering' *Rev. Sci. Instrum.* **80**, (2009), 073906.

A. A. Baker, W. Braun, G. Gassler, S. Rembold, A. Fischer, T. Hesjedal 'An ultra-compact, high-throughput molecular beam epitaxy growth system' *Review of Scientific Instruments* **86**, (2015), 043901.

High Pressure

Martin Kreuzer, Thomas Kaltofen, Roland Steitz, Beat H. Zehnder, Reiner Dahint 'Pressure cell for investigations of solid–liquid interfaces by neutron reflectivity' *Rev. Sci. Instrum.* **82**, (2011), 023902.

Alexandros Koutsioubas, Didier Lairez, Gilbert Zalczer, Fabrice Cousin 'Slow and remanent electric polarization of adsorbed BSA layer evidenced by neutron reflection' *Soft Matter*, **8**, (2012), 2638-2643.

Julian Eastoe, Alex Rankin, Ray Wat, Colin D. Bain, Dmitrii Styrkas, Jeff Penfold 'Dynamic Surface Excesses of Fluorocarbon Surfactants' *Langmuir*, **19**, (2003), 7734-7739.

UPPSALA

Battery Electrodes

B. Jerliu, L. Dörrer, E. Hüger, G. Borchardt, R. Steitz, U. Geckle, V. Oberst, M. Bruns, O. Schneider, H. Schmidt 'Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries' *Phys. Chem. Chem. Phys.*, **15**, (2013), 7777-7784.

Liquid / Liquid Interfaces

A. Zarbakhsh, J. Bowers, J. R. P. Webster, 'A new approach for measuring neutron reflection from a liquid/liquid interface' *Meas. Sci. Technol.* **10**, (1999), 738-743.

Other Ideas and Possibilities

UPPSALA UNIVERSITET

http://www.reflectometry.net/reflect_bib.htm#Sample_environment

Sample Environment for Reflection

Seq. No.	Reference	Digital Source - DOI	Year	Technique
61	F. A. Adlmann, P. Gutfreund, J. F. Ankner, J. F. Browning, A. Parizzi,	http://dx.doi.org/10.1107/S1600576714027848	2015	Oscillatory Shear
	B. Vacaliuc, C. E. Halbert, J. P. Rich, A. J. C. Dennison, M. Wolff			
	'Towards neutron scattering experiments with submillisecond time			
	resolution' J. Appl. Cryst. 48, (2015), 220-226.			
42	Anna Angus-Smyth, Richard A. Campbell, Colin D. Bain 'Dynamic	http://dx.doi.org/10.1021/la301297s	2012	Overflowing Cylinder
	Adsorption of Weakly Interacting Polymer/Surfactant Mixtures at the			
	Air/Water Interface' Langmuir, 28, (2012), 12479-12492.			
15	I. F. Bailey 'A review of sample environments in neutron scattering'	http://dx.doi.org/10.1524/zkri.218.2.84.20671	2003	Review
	Z. Kristallogr. 218, (2003), 84-95.			
5	Shenda M. Baker, Gregory Smith, Roger Pynn, Paul Butler, John	http://dx.doi.org/10.1063/1.1145148	1994	Shear
	Hayter, William Hamilton, Lee Magid 'Shear cell for the study of			
	liquid-solid interfaces by neutron scattering' Rev. Sci. Instrum. 65,			
	(1994), 412-416.			
59	A. A. Baker, W. Braun, G. Gassler, S. Rembold, A. Fischer, T.	http://dx.doi.org/10.1063/1.4917009	2015	MBE
	Hesjedal 'An ultra-compact, high-throughput molecular beam epitaxy			
	growth system' Review of Scientific Instruments 86, (2015), 043901.			
4	T. M. Bayerl, R. K. Thomas, A. R. Rennie, J. Penfold, E. Sackmann,	http://dx.doi.org/10.1016/S0006-3495(90)82628-X	1990	Langmuir trough
	'Specular reflection of neutrons at phospholipid monolayers: changes			
	of monolayer structure and head group hydration at the transition from			
	the expanded to the condensed phase state', Biophysical Journal 57,			
	(1990), 1095-1098.			
62	N. Booth, G. Davidson, P. Imperia, S. Lee, B. Stuart, P. Thomas, K.	http://dx.doi.org/10.3233/JNR-170041	2017	Conductivity, in-line
	Komatsu, R. Yamane, S. W. Prescott, H. E. Maynard-Casely, A.			
	Nelson, K. C. Rule 'Three impossible things before lunch - the task of			
	a sample environment specialist' Journal of Neutron Research 19,			
	(2017), 49-56.			
13	James Bowers, Ali Zarbakhsh, John R. P. Webster, Lian R. Hutchings,	http://dx.doi.org/10.1021/la001119o	2001	Liquid/liquid interface
	Randal W Richards 'Neutron Reflectivity Studies at Liquid-Liquid			

Questions?

UPPSALA UNIVERSITET

Roughness

Reflectivity from rough surfaces is decreased.

'Gaussian' roughness' – intensity decreases by $exp(-Q^2\xi^2/2)$ for scattering vector, Q and amplitude of roughness, ξ .

L. Nevot, P. Crocé J. Phys. Appl. 15, T61 (1980)

UPPSALA UNIVERSITET

Critical Angle and Below (critical wavelength and above)

Density difference between two bulk phases determines the critical momentum transfer/angle, Q_c or θ_c

Any variation in intensity below critical angle is probably telling you about the experiment rather than the interface

R = 1 for $\theta < \theta_c$ is often used as a calibrant

Total reflection below critical angle θ cos $\theta = n_2/n_1$

UNIVERSITET

Intensity of Reflected Signal

Waves interfere constructively for

2 d sin $\theta = \lambda$, 2 λ , 3 λ ...

- Measured reflectivity will depend on angle and wavelength. Add wave amplitudes with allowance for phase and calculate intensity as square of amplitude.
- Total reflection for angles less than critical angle, $\theta_c = \arccos(n_1/n_2)$

UPPSALA UNIVERSITET

Fresnel Formula

Reflection from an interface between two media with $\Delta \rho = \rho_1 - \rho_2$ is for Q >> Q_c: R(Q) = 16 $\pi^2 (\Delta \rho)^2 / Q^4$

Note

This does not depend on sign of $\Delta \rho$.

What does background look like?

UPPSALA UNIVERSITET

Average Counts

Angle, Ψ /degrees Rennie et al., *Macromolecules* **22**, (1989), 3466-3475.